Undergraduate Physics
Undergraduate Physics
2015 Fall Term
Disclaimer
- This course listing is informational and does not guarantee availability for registration.
- Please click through to view the class schedule to see sections offered for your selected term.
- Sections may be full or not open for registration. Please use WINS if you wish to register for a course.
ENERGY (GM)
PHYSCS 100
An examination of energy; its nature, the forms in which it appears, its transformation, current and future sources, and energy issues faced by an informed electorate. Three one-hour lectures per week.
PHYSICS FOUNDATIONS (GL)
PHYSCS 130
This course will explore topics in classical physics (motion, heat, sound, electricity, magnetism, and light) and modern physics (atomic structure, quantum mechanics, and relativity) with an emphasis on how the principles explain and predict phenomena we observe every day. Four one-hour lectures and one two-hour laboratory per week.
PRINCIPLES OF PHYSICS I (GL)
PHYSCS 140
An algebra-based course in classical mechanics at the introductory level. The content covers kinematics, Newton's laws, conservation laws, oscillations and waves, applications to fluids and elasticity, and thermodynamics and kinetic theory. Applications to the life and health sciences are emphasized, and essential MCAT subject matter is included. Basic understanding of trigonometry and the manipulation of vectors is necessary. Students with adequate mathematical preparation may wish to consider taking the PHYSCS 180 series. Four one-hour lectures and one three-hour laboratory per week.
PRINCIPLES OF PHYSICS II (GL)
PHYSCS 141
An algebra-based course in electricity and magnetism, circuits, electromagnetic waves, optics and an introduction to modern physics. Applications to the life and health sciences are emphasized, and essential MCAT subject matter is included. Basic understanding of trigonometry and the manipulation of vectors is necessary. Students with adequate mathematical preparation may wish to consider taking the PHYSCS 180 series. Four 0ne-hour lectures and one three-hour laboratory per week.
PHYSICS FOR SCIENTISTS AND ENGINEERS I (GL)
PHYSCS 180
A lecture course in introductory physics including a mathematically rigorous analysis of mechanics, vibrations, wave motion, and thermodynamics using calculus. For majors and minors in physics, engineering, chemistry, mathematics. Four one-hour lectures and one three-hour lab per week. High school calculus recommended.
FRONTIERS OF ENGINEERING AND PHYSICS
PHYSCS 190
An introduction to career tracks and career opportunities in engineering and physics. This course will feature readings on different career possibilities in engineering and physics and visiting lectures by practicing physicists and engineers. Professional skills, identification of career tracks, and scientific and technical communication will be emphasized. One hour lecture per week.
PHYSICS FOR ELEMENTARY TEACHERS (GL)
PHYSCS 212
This course is a one-semester introduction to physics with curriculum and instruction designed as an activity-based hands-on course for K-8 elementary education students and open to all education majors. The course emphasizes a student-oriented pedagogy in order to develop various physics concepts and the nature of science. Topics covered include motion, forces, energy, light, heat, electricity, and magnetism.
INTERMEDIATE LABORATORY
PHYSCS 221
A laboratory course concentrating on techniques of recording, interpretation of, and reporting experimental data. Extensive use will be made of computers in data processing. Topics covered include data acquisition and the recording of data, error analysis, numerical analysis, graphing techniques, computational tools and report writing. Two two-hour laboratories per week.
PHYSICS OF SOUND AND MUSIC (GM)
PHYSCS 240
A descriptive course that deals with various properties of sound, the generation of sound by traditional musical instruments and the electronic production and reproduction of sound. The physical process of hearing and the acoustical properties of rooms are also included. Three one-hour lecture periods per week.
PHYSICS RECITATIONS I
PHYSCS 290
Topics include, limits, increments and infinitesimals and their applications to physical problems, differentiation and differentials in physics, integration as anti-differentiation and integration of higher derivatives (application to kinematics in one dimension), vector and coordinate frames: application to kinematics in two and three dimensions, definite integrals and the integral as an area: application to mechanical energy and work. One-hour lecture per week.
MECHANICS - STATICS
PHYSCS 305
A study of forces on rigid bodies in equilibrium. Topics include force systems, equilibrium, distributed forces, structures, friction, internal forces, centroids and moments of inertia. This course also introduces notations and operations associated with tensor calculus.
METHODS OF THEORETICAL PHYSICS
PHYSCS 324
Topics covered include methods of theoretical physics, vector analysis, differential equations of mathematical physics, analytic functions and integration in the complex plane, Laplace transforms, Fourier series, Fourier transforms, and their applications in physics. Three one hour lectures per week.
OPTICS
PHYSCS 360
This course provides an introductory study of optical phenomena. Geometrical and physical optics beginning with a mathematical treatment of light waves and their interaction with materials. Topics also include interference diffraction, spectroscopy and spectroscopic instruments, polarization, light sources and detectors, lasers, holography, and some topics in modern optics. Three one-hour lectures and one three-hour laboratory per week.
VIBRATIONS AND WAVES
PHYSCS 424
This course emphasizes the relationship between vibrations and waves. Topics include free and damped vibrations in linear and non-linear systems with one- and several-degrees of freedom, longitudinal and transverse waves, and the wave equation. Analytic treatment and applications to real phenomena are stressed throughout this course.
QUANTUM MECHANICS
PHYSCS 425
This course will explore the tools and postulates of Quantum Mechanics. Topics will include one and three-dimensional problems, angular momentum, as well as approximation methods such as time independent perturbation theory, and Wentzel-Kramers-Brillouin (WKB) methods. Three one-hour lectures per week.
PHYSICS SENIOR SEMINAR
PHYSCS 489
The course will train students in making scientific presentations, summarize the concepts and methods taught in the physics major curriculum, and prepare them for the Physics Major Field Test as the final exam in the course. Students will become familiar with physics literature and learn to write abstracts and project proposals. The will demonstrate proper methods of verbal and visual presentation by delivering a graded series of talks, concluding with a satisfactory colloquium on a physics topic. Two one-hour sessions a week.
SPECIAL STUDIES
PHYSCS 496
Variable topics. Group activity. Not offered regularly in the curriculum but offered on topics selected on the basis of timeliness, need, and interest, and generally in the format of regularly scheduled Catalog offerings. Repeatable for a maximum of 3 credits in major or minor in physics.
INDEPENDENT STUDY
PHYSCS 498
Study of a selected topic or topics under the direction of a faculty member. Repeatable for a maximum of 3 credits in major or minor in physics.
INDEPENDENT STUDENT - UNDERGRADUATE RESEARCH
PHYSCS 498R
Study of a selected topic or topics under the direction of a faculty member. Repeatable for a maximum of 3 credits in major or minor in physics.